Title :
Feature Reduction via Generalized Uncorrelated Linear Discriminant Analysis
Author :
Ye, Jieping ; Janardan, Ravi ; Li, Qi ; Park, Haesun
Author_Institution :
Dept. of Comput. Sci. & Eng., Arizona State Univ., Tempe, AZ
Abstract :
High-dimensional data appear in many applications of data mining, machine learning, and bioinformatics. Feature reduction is commonly applied as a preprocessing step to overcome the curse of dimensionality. Uncorrelated linear discriminant analysis (ULDA) was recently proposed for feature reduction. The extracted features via ULDA were shown to be statistically Uncorrelated, which is desirable for many applications. In this paper, an algorithm called ULDA/QR is proposed to simplify the previous implementation of ULDA. Then, the ULDA/GSVD algorithm is proposed, based on a novel optimization criterion, to address the singularity problem which occurs in undersampled problems, where the data dimension is larger than the sample size. The criterion used is the regularized version of the one in ULDA/QR. Surprisingly, our theoretical result shows that the solution to ULDA/GSVD is independent of the value of the regularization parameter. Experimental results on various types of data sets are reported to show the effectiveness of the proposed algorithm and to compare it with other commonly used feature reduction algorithms
Keywords :
data mining; feature extraction; optimisation; principal component analysis; singular value decomposition; bioinformatics; data mining; feature reduction; machine learning; optimization criterion; singularity problem; uncorrelated linear discriminant analysis; Bioinformatics; Data mining; Eigenvalues and eigenfunctions; Feature extraction; Information retrieval; Linear discriminant analysis; Machine learning; Machine learning algorithms; Principal component analysis; Singular value decomposition; Feature reduction; QR-decomposition; generalized singular value decomposition.; uncorrelated linear discriminant analysis;
Journal_Title :
Knowledge and Data Engineering, IEEE Transactions on
DOI :
10.1109/TKDE.2006.160