DocumentCode :
1167580
Title :
A proof of Tutte´s realizability condition
Author :
Mayeda, W.
Volume :
17
Issue :
4
fYear :
1970
fDate :
11/1/1970 12:00:00 AM
Firstpage :
506
Lastpage :
511
Abstract :
This paper gives a simple proof of Tutte\´s realizability condition for a cutset (circuit) matrix of a nonoriented graph [1],[2]. First, a minimum nonrealizable matrix is defined as~a matrix [ N U] that satisfies 1) [N U] is not a cutset (circuit) matrix, 2) [ N U] does not satisfy the conditions in Tutte\´s theorem, and 3) deleting any column of N1 or any row of any normal form [N1 U] of [N U] , the resultant matrix is realizable as a cutset (circuit) matrix. A proof of Tutte\´s theorem in this paper is accomplished by showing that minimum nonrealizable matrices do not exist.
Keywords :
Cutset matrices; Network topology; Chromium; Circuit testing;
fLanguage :
English
Journal_Title :
Circuit Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9324
Type :
jour
DOI :
10.1109/TCT.1970.1083188
Filename :
1083188
Link To Document :
بازگشت