Title :
Relevance feedback using generalized Bayesian framework with region-based optimization learning
Author :
Hsu, Chiou-Ting ; Li, Chuech-Yu
Author_Institution :
Dept. of Comput. Sci., Nat. Tsing Hua Univ., Taiwan, Taiwan
Abstract :
This paper presents a generalized Bayesian framework for relevance feedback in content-based image retrieval. The proposed feedback technique is based on the Bayesian learning method and incorporates a time-varying user model into the formulation. We define the user model with two terms: a target query and a user conception. The target query is aimed to learn the common features from relevant images so as to specify the user´s ideal query. The user conception is aimed to learn a parameter set to determine the time-varying matching criterion. Therefore, at each feedback step, the learning process updates not only the target distribution, but also the target query and the matching criterion. In addition, another objective of this paper is to conduct the relevance feedback on images represented in region level. We formulate the matching criterion using a weighting scheme and proposed a region clustering technique to determine the region correspondence between relevant images. With the proposed region clustering technique, we derive a representation in region level to characterize the target query. Experiments demonstrate that the proposed method combined with time-varying user model indeed achieves satisfactory results and our proposed region-based techniques further improve the retrieval accuracy.
Keywords :
belief networks; content-based retrieval; image matching; image representation; image retrieval; learning (artificial intelligence); optimisation; pattern clustering; relevance feedback; visual databases; content-based image retrieval; generalized Bayesian framework; image representation; region clustering technique; region-based optimization learning; relevance feedback; target query; time-varying matching criterion; time-varying user model; user conception; weighting scheme; Bayesian methods; Content based retrieval; Displays; Feedback; Image databases; Image matching; Image retrieval; Information retrieval; Learning systems; Probability distribution; Bayesian learning; content-based image retrieval (CBIR); region clustering; region correspondence; relevance feedback; target query; user conception; Algorithms; Artificial Intelligence; Bayes Theorem; Database Management Systems; Databases, Factual; Feedback; Image Enhancement; Image Interpretation, Computer-Assisted; Information Storage and Retrieval; Pattern Recognition, Automated;
Journal_Title :
Image Processing, IEEE Transactions on
DOI :
10.1109/TIP.2005.852202