DocumentCode :
1168763
Title :
Bicubic functions with real multiple poles and zeros
Author :
Tirtoprodjo, S.
Volume :
18
Issue :
4
fYear :
1971
fDate :
7/1/1971 12:00:00 AM
Firstpage :
470
Lastpage :
471
Abstract :
When Z(s) has one triple pole and one triple zero, i.e., Z(s)=(s+z)^{3}/(s+p)^{3} , a series-parallel RLC realization can be obtained using an extended form of the Guillemin technique. This synthesis, which eliminates the need for surplus factors and avoids minimization, proves to be appropriate for Z(s) within its entire positive real range.
Keywords :
Bicubic driving-point functions; General analysis and synthesis methods; Circuit synthesis; Frequency; Impedance; Integrated circuit interconnections; Minimization; Network synthesis; Poles and zeros; Polynomials; RLC circuits; Switches;
fLanguage :
English
Journal_Title :
Circuit Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9324
Type :
jour
DOI :
10.1109/TCT.1971.1083307
Filename :
1083307
Link To Document :
بازگشت