DocumentCode :
1171133
Title :
Digital filtering and prolate functions
Author :
Papoulis, Athanasios ; Bertran, Miguel S.
Volume :
19
Issue :
6
fYear :
1972
fDate :
11/1/1972 12:00:00 AM
Firstpage :
674
Lastpage :
681
Abstract :
A class of trigonometric polynomials p(x) = \\sum _{n=-N}^{N} a_{n} e^{j n \\pi x} of unit energy is introduced such that their energy concentration \\alpha = \\int_{-e}^{e} p^{2}(x) dx in a specified interval (- \\epsilon, \\epsilon) is maximum. It is shown that the coefficients a_{n} must be the eigenvectors of the system \\sum _{m=-N}^{N} frac{\\sin (n - m)\\pi \\epsilon}{(n - m)\\epsilon} a_{m} = \\lambda a_{n} . corresponding to the maximum eigenvalue X. These polynomials are determined for N = 1, \\cdots , 10 and \\epsilon = 0.025, \\cdots , 0.5 . The resulting family of periodic functions forms the discrete version of the familiar prolate spheroidal wave functions.
Keywords :
Digital networks; Nonrecursive digital filters; Optimization techniques; Polynomials; Prolate functions; Trigonometric polynomials; Continuous time systems; Delay; Difference equations; Digital filters; Eigenvalues and eigenfunctions; Feedback; Filtering; Polynomials; Transfer functions; Wave functions;
fLanguage :
English
Journal_Title :
Circuit Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9324
Type :
jour
DOI :
10.1109/TCT.1972.1083556
Filename :
1083556
Link To Document :
بازگشت