• DocumentCode
    117264
  • Title

    Incremental clustering of data stream using real ants behavior

  • Author

    Masmoudi, N. ; Azzag, Hanane ; Lebbah, Mustapha ; Bertelle, Cyrille

  • Author_Institution
    LITIS, Univ. of Havre, Le Havre, France
  • fYear
    2014
  • fDate
    July 30 2014-Aug. 1 2014
  • Firstpage
    262
  • Lastpage
    268
  • Abstract
    We present in this paper a new biomimetic method nammed CL-AntInc for data incremental clustering. This algorithm uses the behavior of real ants. We deal with the issue of data volume through a clustering heuristic. Dynamic graphs are constructed according to a simulation of colonial odors and pheromone mechanisms. We used numerical databases extracted from the Machine Learning Repository. The experimental results show the effectiveness of the suggested algorithm.
  • Keywords
    biomimetics; database management systems; graph theory; learning (artificial intelligence); pattern clustering; CL-AntInc; biomimetic method; clustering heuristic; colonial odors; data incremental clustering; data stream; data volume; dynamic graphs; machine learning repository; numerical databases; pheromone mechanisms; real ants behavior; Bismuth; Data models; Databases; Niobium; Vectors; Data analysis; collective intelligence; incremental clustering;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Nature and Biologically Inspired Computing (NaBIC), 2014 Sixth World Congress on
  • Conference_Location
    Porto
  • Print_ISBN
    978-1-4799-5936-5
  • Type

    conf

  • DOI
    10.1109/NaBIC.2014.6921889
  • Filename
    6921889