DocumentCode :
1176419
Title :
Springrobot: a prototype autonomous vehicle and its algorithms for lane detection
Author :
Li, Qing ; Zheng, Nanning ; Cheng, Hong
Author_Institution :
Inst. of Artificial Intelligence & Robotics, Xi´´an Jiaotong Univ., China
Volume :
5
Issue :
4
fYear :
2004
Firstpage :
300
Lastpage :
308
Abstract :
This work presents the current status of the Springrobot autonomous vehicle project, whose main objective is to develop a safety-warning and driver-assistance system and an automatic pilot for rural and urban traffic environments. This system uses a high precise digital map and a combination of various sensors. The architecture and strategy for the system are briefly described and the details of lane-marking detection algorithms are presented. The R and G channels of the color image are used to form graylevel images. The size of the resulting gray image is reduced and the Sobel operator with a very low threshold is used to get a grayscale edge image. In the adaptive randomized Hough transform, pixels of the gray-edge image are sampled randomly according to their weights corresponding to their gradient magnitudes. The three-dimensional (3-D) parametric space of the curve is reduced to the two-dimensional (2-D) and the one-dimensional (1-D) space. The paired parameters in two dimensions are estimated by gradient directions and the last parameter in one dimension is used to verify the estimated parameters by histogram. The parameters are determined coarsely and quantization accuracy is increased relatively by a multiresolution strategy. Experimental results in different road scene and a comparison with other methods have proven the validity of the proposed method.
Keywords :
Hough transforms; computer vision; edge detection; learning (artificial intelligence); mobile robots; Sobel operator; Springrobot; adaptive randomized Hough transform; automatic pilot; driver-assistance system; grayscale edge image; high precision digital map; lane-marking detection algorithms; prototype autonomous vehicle; safety-warning; Color; Detection algorithms; Gray-scale; Mobile robots; Prototypes; Remotely operated vehicles; Sensor systems; Vehicle detection; Vehicle driving; Vehicle safety; 65; Autonomous vehicle; HT; lane-boundary detection; machine learning; randomized Hough transform;
fLanguage :
English
Journal_Title :
Intelligent Transportation Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
1524-9050
Type :
jour
DOI :
10.1109/TITS.2004.838220
Filename :
1364006
Link To Document :
بازگشت