DocumentCode :
1178203
Title :
Properties of optimum binary message-passing decoders
Author :
Ardakani, Masoud ; Kschischang, Frank R.
Author_Institution :
Edward S. Rogers Sr. Dept. of Electr. & Comput. Eng., Univ. of Toronto, Ont., Canada
Volume :
51
Issue :
10
fYear :
2005
Firstpage :
3658
Lastpage :
3665
Abstract :
We consider a class of message-passing decoders for low-density parity-check (LDPC) codes whose messages are binary valued. We prove that if the channel is symmetric and all codewords are equally likely to be transmitted, an optimum decoding rule (in the sense of minimizing message error rate) should satisfy certain symmetry and isotropy conditions. Using this result, we prove that Gallager´s Algorithm B achieves the optimum decoding threshold among all binary message-passing decoding algorithms for regular codes. For irregular codes, we argue that when the nodes of the message-passing decoder do not exploit knowledge of their decoding neighborhood, optimality of Gallager´s Algorithm B is preserved. We also consider the problem of designing irregular LDPC codes and find a bound on the achievable rates with Gallager´s Algorithm B. Using this bound, we study the case of low error-rate channels and analytically find good degree distributions for them.
Keywords :
binary codes; channel coding; decoding; error statistics; message passing; optimisation; parity check codes; Gallager algorithm B; LDPC; binary message-passing decoder; error-rate channel; isotropy condition; low-density parity-check code; optimum decoding rule; symmetric channel; Algorithm design and analysis; Convergence; Error analysis; Error probability; Iterative decoding; Mutual information; Parity check codes; Probability distribution; Strontium; Turbo codes; Gallager´s algorithm B; irregular codes; low-density parity-check (LDPC) codes; message-passing decoders;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2005.855611
Filename :
1512437
Link To Document :
بازگشت