Title :
Cooperative Coevolutionary Algorithm for Unit Commitment
Author :
Chen, Huanting ; Wang, Xiongfei
Author_Institution :
Xi´an Jiaotong University, Xi´an, China
Abstract :
This paper presents a new cooperative coevolutionary algorithm (CCA) for power system unit commitment. CCA is an extension of the traditional genetic algorithm (GA), which appears to have considerable potential for formulating and solving more complex problems by explicitly modeling the coevolution of cooperating species. This method combines the basic ideas of Lagrangian relaxation technique (LR) and GA to form a two-level approach. The first level uses a subgradient-based stochastic optimization method to optimize Lagrangian multipliers. The second level uses GA to solve the individual unit commitment subproblems. CCA can manage more complicated time-dependent constraints than conventional LR. Simulation results show that CCA has a good convergent property and a significant speedup over traditional GAs and can obtain high-quality solutions. The "curse of dimensionality" is surmounted, and the computational burden is almost linear with the problem scale.
Keywords :
Acceleration; Computational modeling; Cost function; Genetic algorithms; Lagrangian functions; Optimization methods; Power generation economics; Power system modeling; Sociotechnical systems; Stochastic processes;
Journal_Title :
Power Engineering Review, IEEE
DOI :
10.1109/MPER.2002.4311691