DocumentCode :
1180864
Title :
Linear authentication codes: bounds and constructions
Author :
Wang, Huaxiong ; Xing, Chaoping ; Safavi-Naini, Rei
Author_Institution :
Dept. of Comput., Macquarie Univ., Sydney, NSW, Australia
Volume :
49
Issue :
4
fYear :
2003
fDate :
4/1/2003 12:00:00 AM
Firstpage :
866
Lastpage :
872
Abstract :
In this paper, we consider a new class of unconditionally secure authentication codes, called linear authentication codes (or linear A-codes). We show that a linear A-code can be characterized by a family of subspaces of a vector space over a finite field. We then derive an upper bound on the size of the source space when other parameters of the system, that is, the sizes of the key space and the authenticator space, and the deception probability, are fixed. We give constructions that are asymptotically close to the bound and show applications of these codes in constructing distributed authentication systems.
Keywords :
linear codes; message authentication; authenticator space; constructions; deception probability; distributed authentication systems; key space; linear A-codes; linear authentication codes; source space; subspaces; unconditionally secure codes; upper bound; vector space; Authentication; Chaotic communication; Codes; Cryptography; Galois fields; Information geometry; Information theory; Linearity; Upper bound; Vectors;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2003.809567
Filename :
1193797
Link To Document :
بازگشت