DocumentCode :
1180871
Title :
Control of Markov chains with safety bounds
Author :
Arapostathis, Ari ; Kumar, Ratnesh ; Hsu, Shun-Pin
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Texas, Austin, TX, USA
Volume :
2
Issue :
4
fYear :
2005
Firstpage :
333
Lastpage :
343
Abstract :
In an earlier paper, the authors introduced the notion of safety control of stochastic discrete event systems (DESs), modeled as controlled Markov chains. Safety was specified as an upper bound on the components of the state probability distribution, and the class of irreducible and aperiodic Markov chains were analyzed relative to this safety criterion. Under the assumption of complete state observations: 1) the authors identified the set of all state-feedback controllers that enforce the safety specification, for all safe initial probability distributions and 2) for any given state-feedback controller, the authors constructed the maximal invariant safe set (MISS). In this paper, the authors extend the work in several ways: 1) safety is specified in terms of both upper and lower bounds; 2) we consider a larger class of Markov chains that includes reducible and periodic chains; 3) we present a more general iterative algorithm for computing the MISS, which is quite flexible in its initialization; 4) we obtain an explicit upper bound for the number of iterations needed for the algorithm to terminate. Note to Practitioners-The paper studies "safety" control of stochastic systems modeled as Markov chains. Safety is defined as a requirement that the probability distribution in each state remain bounded between an upper and a lower bound. For example, a financial investment policy should be such that the probability of ever being bankrupt is bounded below by a positive number. Prior works on control of Markov chains have addressed optimality but not safety. A condition is obtained under which a controlled Markov chain is guaranteed to be safe at all times. For those chains that do not satisfy such a condition, a maximal subset of the safe set of distributions is computed so that if the chain is initialized with a distribution in that maximal subset, it remains safe all the times. A condition is obtained under which such a maximal set is nonempty. The computation of such a maximal set is iterative and we provide a condition under which the computation terminates in a finite number of iterations. Manufacturing system examples are included to illustrate the results.
Keywords :
Markov processes; discrete event systems; iterative methods; state feedback; stochastic systems; aperiodic Markov chains; controlled Markov chain; initial probability distributions; irreducible Markov chains; iterative algorithm; maximal invariant safe set; periodic chains; reducible chains; safety bounds; safety control; state probability distribution; state-feedback controllers; stochastic discrete event systems; Control system synthesis; Discrete event systems; Distributed computing; Investments; Iterative algorithms; Optimal control; Probability distribution; Safety; Stochastic systems; Upper bound; Markov chain; reliability; safety specification; stochastic discrete event system (DES);
fLanguage :
English
Journal_Title :
Automation Science and Engineering, IEEE Transactions on
Publisher :
ieee
ISSN :
1545-5955
Type :
jour
DOI :
10.1109/TASE.2005.853392
Filename :
1514453
Link To Document :
بازگشت