Title :
Improving the generalized likelihood ratio test for unknown linear Gaussian channels
Author :
Erez, Elona ; Feder, Meir
Author_Institution :
Dept. of Electr. Eng.-Syst., Tel-Aviv Univ., Ramat-Aviv, Israel
fDate :
4/1/2003 12:00:00 AM
Abstract :
In this work, we consider the decoding problem for unknown Gaussian linear channels. Important examples of linear channels are the intersymbol interference (ISI) channel and the diversity channel with multiple transmit and receive antennas employing space-time codes (STC). An important class of decoders is based on the generalized likelihood ratio test (GLRT). Our work deals primarily with a decoding algorithm that uniformly improves the error probability of the GLRT decoder for these unknown linear channels. The improvement is attained by increasing the minimal distance associated with the decoder. This improvement is uniform, i.e., for all the possible channel parameters, the error probability is either smaller by a factor (that is exponential in the improved distance), or for some, may remain the same. We also present an algorithm that improves the average (over the channel parameters) error probability of the GLRT decoder. We provide simulation results for both decoders.
Keywords :
Gaussian channels; antenna arrays; antenna theory; channel coding; decoding; error statistics; intersymbol interference; maximum likelihood estimation; GLRT; ISI channel; STC; communication channel; decoding problem; diversity channel; error probability; generalized likelihood ratio test; intersymbol interference channel; minimal distance; multiple receive antennas; multiple transmit antennas; space-time codes; unknown linear Gaussian channels; Error probability; Fading; Gaussian channels; Intersymbol interference; Maximum likelihood decoding; Maximum likelihood detection; Maximum likelihood estimation; Receiving antennas; Testing; Transmitters;
Journal_Title :
Information Theory, IEEE Transactions on
DOI :
10.1109/TIT.2003.809598