DocumentCode :
1181050
Title :
Likelihood Gradient Evaluation Using Square-Root Covariance Filters
Author :
Kulikova, M.V.
Author_Institution :
Sch. of Comput. & Appl. Math., Univ. of the Witwatersrand, Johannesburg
Volume :
54
Issue :
3
fYear :
2009
fDate :
3/1/2009 12:00:00 AM
Firstpage :
646
Lastpage :
651
Abstract :
Using the array form of numerically stable square-root implementation methods for Kalman filtering formulas, we construct a new square-root algorithm for the log-likelihood gradient (score) evaluation. This avoids the use of the conventional Kalman filter with its inherent numerical instabilities and improves the robustness of computations against roundoff errors. The new algorithm is developed in terms of covariance quantities and based on the ldquocondensed formrdquo of the array square-root filter.
Keywords :
Kalman filters; discrete time systems; gradient methods; maximum likelihood estimation; Kalman filtering; log-likelihood gradient evaluation; maximum likelihood estimation; square-root algorithm; square-root covariance filters; Covariance matrix; Filtering algorithms; Kalman filters; Maximum likelihood estimation; Numerical stability; Riccati equations; Robustness; Roundoff errors; Stochastic systems; Time measurement; Gradient methods; Kalman filtering; identification; maximum likelihood estimation; numerical stability;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.2008.2010989
Filename :
4796264
Link To Document :
بازگشت