• DocumentCode
    118409
  • Title

    Statistical parameters in the dual tree complex wavelet transform domain for the detection of epilepsy and seizure

  • Author

    Das, Anindya Bijoy ; Bhuiyan, Mohammed Imamul Hassan ; Alam, S. M. Shafiul

  • Author_Institution
    Dept. of Electr. & Electron. Eng., Bangladesh Univ. of Eng. & Technol., Dhaka, Bangladesh
  • fYear
    2014
  • fDate
    13-15 Feb. 2014
  • Firstpage
    1
  • Lastpage
    6
  • Abstract
    In this paper, a comprehensive statistical analysis of electroencephalogram (EEG) signals is carried out in the dual tree complex wavelet transform domain using a publicly available EEG database. It is shown that variance and kurtosis can be effective in distinguishing EEG signals at sub-band levels. It is further shown that the parameters of a normal inverse Gaussian probability density function can equally discriminate the EEG signals at sub-band levels. Thus, these statistical quantities may be used to characterize EEG signals and help the researchers in developing improved classifiers for the detection of epilepsy and seizure and building a better understanding of the diverse process of EEG signals.
  • Keywords
    electroencephalography; medical disorders; medical signal processing; probability; wavelet transforms; EEG signals; dual tree complex wavelet transform domain; electroencephalogram signals; epilepsy detection; normal inverse Gaussian probability density function; seizure detection; statistical analysis; statistical parameters; Databases; Discrete wavelet transforms; Electroencephalography; Epilepsy; Feature extraction; Dual Tree Complex Wavelet Transform(DT-CWT); Electroencephalogram(EEG); Normal Inverse Gaus-sian(NIG); Seizure;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Electrical Information and Communication Technology (EICT), 2013 International Conference on
  • Conference_Location
    Khulna
  • Print_ISBN
    978-1-4799-2297-0
  • Type

    conf

  • DOI
    10.1109/EICT.2014.6777821
  • Filename
    6777821