DocumentCode :
118409
Title :
Statistical parameters in the dual tree complex wavelet transform domain for the detection of epilepsy and seizure
Author :
Das, Anindya Bijoy ; Bhuiyan, Mohammed Imamul Hassan ; Alam, S. M. Shafiul
Author_Institution :
Dept. of Electr. & Electron. Eng., Bangladesh Univ. of Eng. & Technol., Dhaka, Bangladesh
fYear :
2014
fDate :
13-15 Feb. 2014
Firstpage :
1
Lastpage :
6
Abstract :
In this paper, a comprehensive statistical analysis of electroencephalogram (EEG) signals is carried out in the dual tree complex wavelet transform domain using a publicly available EEG database. It is shown that variance and kurtosis can be effective in distinguishing EEG signals at sub-band levels. It is further shown that the parameters of a normal inverse Gaussian probability density function can equally discriminate the EEG signals at sub-band levels. Thus, these statistical quantities may be used to characterize EEG signals and help the researchers in developing improved classifiers for the detection of epilepsy and seizure and building a better understanding of the diverse process of EEG signals.
Keywords :
electroencephalography; medical disorders; medical signal processing; probability; wavelet transforms; EEG signals; dual tree complex wavelet transform domain; electroencephalogram signals; epilepsy detection; normal inverse Gaussian probability density function; seizure detection; statistical analysis; statistical parameters; Databases; Discrete wavelet transforms; Electroencephalography; Epilepsy; Feature extraction; Dual Tree Complex Wavelet Transform(DT-CWT); Electroencephalogram(EEG); Normal Inverse Gaus-sian(NIG); Seizure;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Electrical Information and Communication Technology (EICT), 2013 International Conference on
Conference_Location :
Khulna
Print_ISBN :
978-1-4799-2297-0
Type :
conf
DOI :
10.1109/EICT.2014.6777821
Filename :
6777821
Link To Document :
بازگشت