DocumentCode :
1185101
Title :
Infrared Sensing With Self-Supporting YBCO Uncooled IR Microbolometer Array Integrated With On-Chip CCBDI Readout Circuit
Author :
Kumar, Sandeep ; Butler, Donald P.
Author_Institution :
Dept. of Electr. Eng., Univ. of Texasat Arlington, Arlington, TX
Volume :
9
Issue :
4
fYear :
2009
fDate :
4/1/2009 12:00:00 AM
Firstpage :
411
Lastpage :
418
Abstract :
This paper presents the integration and characterization of self-supporting yttrium barium copper oxide (YBCO) microbolometer arrays (pixel size of 31 times 31 mum2) with on-chip constant current buffered direct injection (CCBDI) readout circuit in AMI Semiconductor 1.5 mum double-poly-double-metal n-well 2.5 V complementary metal-oxide-semiconductor (CMOS) technology. The uncooled semiconducting YBCO microbolometer array was fabricated using two different electrode arm geometries to achieve either a traditional 30 Hz frame rate and a higher frame rate of 200 Hz. The CCBDI readout circuit was designed to work both with the traditional frame rate of 30 Hz, as well as a higher frame rate of 200 Hz when extrapolated to a 640 times 480 array for faster thermal imaging in commercial, military and biomedical applications. The CCBDI readout circuit offers advantages of high linearity and uniformity, low offset error and provides maximum sensitivity at a bias current. The CCBDI readout has a great potential due to higher injection efficiency of the CCBDI amplifier and the stable microbolometer bias control. The measured value of thermal conductance is 1.01 times 10-7 W/K for the 30 Hz frame rate electrode arm geometry. The maximum responsivity of 1.62 times 105 V/W and maximum detectivity of 3.51 times 107 cm Hz1/2 /W were measured for a single YBCO microbolometer pixel from the 4 times 4 array with CCBDI readout circuit and a 200 Hz frame rate electrode arm geometry. The maximum responsivity of 1.24 times 105 V/W and maximum detectivity of 1.98 times 10 7cm Hz 1/2 /W were measured of a single YBCO microbolometer pixel from the 4 times 4 array with CCBDI readout circuit and a 30 Hz frame rate electrode arm geometry.
Keywords :
CMOS integrated circuits; bolometers; infrared detectors; readout electronics; complementary metal-oxide-semiconductor technology; electrode arm geometry; frequency 200 Hz; frequency 30 Hz; infrared sensing; on-chip CCBDI readout circuit; on-chip constant current buffered direct injection readout circuit; self-supporting YBCO uncooled IR microbolometer array; self-supporting yttrium barium copper oxide microbolometer arrays; stable microbolometer bias control; Ambient intelligence; Biomedical imaging; Biomedical measurements; CMOS technology; Circuits; Electrodes; Geometry; Linearity; Semiconductivity; Yttrium barium copper oxide; Infrared; microbolometer; readout integrated circuit; yttrium barium copper oxide (YBCO);
fLanguage :
English
Journal_Title :
Sensors Journal, IEEE
Publisher :
ieee
ISSN :
1530-437X
Type :
jour
DOI :
10.1109/JSEN.2009.2014404
Filename :
4797911
Link To Document :
بازگشت