DocumentCode :
1186245
Title :
Frequency Scaling of a Linear Time-Invariant Network by a Time-varying Function
Author :
Belal, A. ; Shenoi, B.A.
Volume :
29
Issue :
1
fYear :
1982
fDate :
1/1/1982 12:00:00 AM
Firstpage :
57
Lastpage :
58
Abstract :
Given a linear time-invariant RLC network, with input x(t) and output y(t) , then the well-known frequency scaling theorem states that multiplication of all L \´s and C \´s by some constant a^{-1} is equivalent to changing the input to ax(at) and the output to ay(at) . We show here that when the multiplier is a time-varying function a^{-1}(t) , the equivalent result is to change the input from x(t) to a(\\gamma ^{-1}(t))x(\\gamma ^{-1}(t)) and the output from y(t) to a(\\gamma ^{-1}(t))y(\\gamma ^{-1}(t)) where \\gamma (t)= \\int_{0}^{t}frac{d \\tau }{a(t)} . Some illustrative examples are footnote[1]{given}. (1)In this correspondence a^{-1} means frac{1}{a} a^{-1}(t)= 1/a(t) ; but u^{-1}(t), \\gamma ^{-1}(t), are inverse functions.
Keywords :
Linear circuits, time-invariant; RLC circuits; Capacitance; Capacitors; Differential equations; Frequency; Impedance; Inductors; Kernel; Laplace equations; RLC circuits; Transforms;
fLanguage :
English
Journal_Title :
Circuits and Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
0098-4094
Type :
jour
DOI :
10.1109/TCS.1982.1085072
Filename :
1085072
Link To Document :
بازگشت