DocumentCode :
1186581
Title :
Silicon tunnel diodes formed by proximity rapid thermal diffusion
Author :
Wang, Jinli ; Wheeler, Dane ; Yan, Yan ; Zhao, Jialin ; Howard, Scott ; Seabaugh, Alan
Author_Institution :
Dept. of Electr. Eng., Univ. of Notre Dame, IN, USA
Volume :
24
Issue :
2
fYear :
2003
Firstpage :
93
Lastpage :
95
Abstract :
We demonstrate the first silicon tunnel diodes (TDs) formed using proximity rapid thermal diffusion and spin-on diffusants. Room temperature peak-to-valley current ratio of 2 is obtained at approximately 100 A/cm/sup 2/ peak current density. Secondary ion mass spectroscopy is used to compare proximity rapid thermal diffusion with rapid thermal diffusion from spin-coated diffusants in direct contact with a device wafer. The proximity rapid thermal diffusion approach provides a cleaner wafer surface for subsequent processing and yields TDs with good local uniformity.
Keywords :
current density; elemental semiconductors; negative resistance; rapid thermal processing; secondary ion mass spectra; silicon; spin coating; thermal diffusion; tunnel diode oscillators; tunnel diodes; Esaki tunnel diodes; Si tunnel diodes; Si:B-Si:P; Si:P; negative differential resistance; peak current density; proximity rapid thermal diffusion; room temperature peak-to-valley current ratio; secondary ion mass spectroscopy; spin-coated diffusants; spin-on diffusants; tunnel diode oscillator; wafer surface cleanliness; Boron; CMOS process; CMOS technology; Fabrication; Hafnium; Rapid thermal annealing; Rapid thermal processing; Semiconductor diodes; Silicon; Thermal resistance;
fLanguage :
English
Journal_Title :
Electron Device Letters, IEEE
Publisher :
ieee
ISSN :
0741-3106
Type :
jour
DOI :
10.1109/LED.2002.807706
Filename :
1196027
Link To Document :
بازگشت