Title :
From Submicrosecond- to Nanosecond-Pulsed Atmospheric-Pressure Plasmas
Author :
Iza, Felipe ; Walsh, James L. ; Kong, Michael G.
Author_Institution :
Dept. of Electron. & Electr. Eng., Loughborough Univ., Loughborough
fDate :
7/1/2009 12:00:00 AM
Abstract :
We have developed a time-hybrid computational model to study pulsed atmospheric-pressure discharges and compared simulation results with experimental data. Experimental and computational results indicate that increasing the applied voltage results in faster ignition of the discharge and an increase in the mean electron energy, opening the door to tunable plasma chemistry by means of pulse shaping. Above a critical electric field of ~2 kV/mm for ~1-mm discharges, pulsed plasmas ignite right after the application of an externally applied voltage pulse. Despite the large pd value (30-300 torr ldr cm) and the high applied electric field, the discharges are found to be streamer free in a desirable glow like mode. The comparison of the time evolution of the mean electron kinetic energy as a function of the pulse rise time suggests that a fast rise time is not necessarily the best way of achieving high mean electron energy.
Keywords :
glow discharges; ignition; plasma chemistry; plasma simulation; critical electric field; fast rise time; glowlike mode; ignition; mean electron kinetic energy; plasma chemistry; pulse shaping; pulsed atmospheric-pressure discharges; time-hybrid computational model; Atmospheric pressure; nanosecond; pulsed plasma; simulation;
Journal_Title :
Plasma Science, IEEE Transactions on
DOI :
10.1109/TPS.2009.2014766