DocumentCode :
1188527
Title :
The Rician inverse Gaussian distribution: a new model for non-Rayleigh signal amplitude statistics
Author :
Eltoft, Torbjørn
Author_Institution :
Dept. of Phys., Univ. of Tromso, Norway
Volume :
14
Issue :
11
fYear :
2005
Firstpage :
1722
Lastpage :
1735
Abstract :
In this paper, we introduce a new statistical distribution for modeling non-Rayleigh amplitude statistics, which we have called the Rician inverse Gaussian (RiIG) distribution. It is a mixture of the Rice distribution and the inverse Gaussian distribution. The probability density function (pdf) is given in closed form as a function of three parameters. This makes the pdf very flexible in the sense that it may be fitted to a variety of shapes, ranging from the Rayleigh-shaped pdf to a noncentral χ2-shaped pdf. The theoretical basis of the new model is quite thoroughly discussed, and we also give two iterative algorithms for estimating its parameters from data. Finally, we include some modeling examples, where we have tested the ability of the distribution to represent locale amplitude histograms of linear medical ultrasound data and single-look synthetic aperture radar data. We compare the goodness of fit of the RiIG model with that of the K model, and, in most cases, the new model turns out as a better statistical model for the data. We also include a series of log-likelihood tests to evaluate the predictive performance of the proposed model.
Keywords :
Gaussian channels; Gaussian distribution; Rayleigh channels; Rician channels; iterative methods; parameter estimation; signal processing; Rice distribution; Rician inverse Gaussian distribution; RilG; iterative algorithm; nonRayleigh amplitude statistics; parameter estimation; pdf; probability density function; statistical distribution; Gaussian distribution; Histograms; Iterative algorithms; Medical tests; Parameter estimation; Probability density function; Rician channels; Shape; Statistical distributions; Ultrasonic imaging; Non-Gaussian signal statistics; non-Rayleigh amplitude statistics; speckle model; synthetic aperture radar (SAR) speckle model; ultrasonic speckle model; Algorithms; Artificial Intelligence; Computer Simulation; Image Enhancement; Image Interpretation, Computer-Assisted; Information Storage and Retrieval; Models, Statistical; Normal Distribution; Numerical Analysis, Computer-Assisted; Signal Processing, Computer-Assisted; Stochastic Processes; Tomography, Optical Coherence;
fLanguage :
English
Journal_Title :
Image Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1057-7149
Type :
jour
DOI :
10.1109/TIP.2005.857281
Filename :
1518938
Link To Document :
بازگشت