DocumentCode :
1188616
Title :
Building robust wavelet estimators for multicomponent images using Stein´s principle
Author :
Benazza-Benyahia, Amel ; Pesquet, Jean-Christophe
Author_Institution :
Unite de Recherche en Imagerie Satellitaire et ses Applications, Ecole Superieure des Commun., Tunis, Tunisia
Volume :
14
Issue :
11
fYear :
2005
Firstpage :
1814
Lastpage :
1830
Abstract :
Multichannel imaging systems provide several observations of the same scene which are often corrupted by noise. In this paper, we are interested in multispectral image denoising in the wavelet domain. We adopt a multivariate statistical approach in order to exploit the correlations existing between the different spectral components. Our main contribution is the application of Stein´s principle to build a new estimator for arbitrary multichannel images embedded in additive Gaussian noise. Simulation tests carried out on optical satellite images show that the proposed method outperforms conventional wavelet shrinkage techniques.
Keywords :
AWGN channels; Bayes methods; image denoising; nonlinear estimation; spectral analysis; wavelet transforms; Bayesian method; Stein´s principle; additive Gaussian noise; arbitrary multichannel image; multicomponent imaging system; multispectral image denoising; multivariate statistical approach; nonlinear estimation; optical satellite image; robust wavelet estimator; spectral component; unbiased risk estimator; Additive noise; Gaussian noise; Layout; Multispectral imaging; Noise reduction; Noise robustness; Optical imaging; Optical noise; Testing; Wavelet domain; Bayesian methods; Stein´s estimator; image denoising; multispectral images; multivariate estimation; nonlinear estimation; robust estimation; satellite images; shrinkage; unbiased risk estimator; wavelets; Algorithms; Artifacts; Artificial Intelligence; Computer Simulation; Image Enhancement; Image Interpretation, Computer-Assisted; Information Storage and Retrieval; Models, Statistical; Numerical Analysis, Computer-Assisted; Signal Processing, Computer-Assisted; Stochastic Processes;
fLanguage :
English
Journal_Title :
Image Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1057-7149
Type :
jour
DOI :
10.1109/TIP.2005.857247
Filename :
1518947
Link To Document :
بازگشت