DocumentCode :
1191666
Title :
The Smith-Barnwell condition and nonnegative scaling functions
Author :
Janssen, A.J.E.M.
Author_Institution :
Philips Res. Lab., Eindhoven, Netherlands
Volume :
38
Issue :
2
fYear :
1992
fDate :
3/1/1992 12:00:00 AM
Firstpage :
884
Lastpage :
886
Abstract :
It is shown that any periodic function m/sub 0/( zeta ) with nonnegative Fourier coefficients that satisfies the Smith-Barnwell conditions m/sub 0/(0)=1, mod m/sub 0/( zeta )/sup 2/+ mod m/sub 0/( zeta + pi ) mod /sup 2/=1 is of the form m/sub 0/( zeta )=exp(il zeta /2) cos k zeta /2 with l, k odd integers. As a consequence it is concluded that any nonnegative scaling function with orthonormal integer translates is of the form x/sub (k,k+1)/ with k in Z.<>
Keywords :
signal processing; transforms; Smith-Barnwell condition; multiresolution analysis; nonnegative scaling functions; orthonormal integer translates; periodic function; signal analysis; wavelets; Erbium; Multiresolution analysis; Ovens;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.119746
Filename :
119746
Link To Document :
بازگشت