DocumentCode :
120165
Title :
Nonlinear Optimization Model Construction and Empirical Analysis of Complete Energy Intensity in Transportation Equipment Manufacturing Industry Based on Input and Output
Author :
Gen Li ; Guangming Zhang ; Xiaofang Luo
Author_Institution :
Sch. of Econ. & Manage., Jiangsu Univ. of Sci. & Technol., Zhenjiang, China
fYear :
2014
fDate :
4-6 July 2014
Firstpage :
320
Lastpage :
324
Abstract :
To lower complete energy intensity of transportation equipment manufacturing industry (TEMI) is an important approach to reducing consumption and pollution. On the basis of decision variables of 18 industries´ final demands and minimum target of complete energy intensity, the paper constructs a nonlinear optimization model of complete energy intensity based on input and output. On the basis of the model, the paper designs three schemes and two scenarios. Results show that minimum value range of complete energy intensity of TEMI is 0.9307 to 1.0529 ton of coal equivalent/ten thousand yuan. Compared with 2010, the decline rate range is from 10.94% to 21.28%. Under scenario 2 of C scheme, it can realize the goal that complete energy intensity of TEMI decreases by 20% in 2015. To achieve this goal, China is supposed to promote the development of the shipbuilding industry, optimize the structure of the automobile manufacturing industry, heighten the investment and import coefficients, and lower the consumption and export coefficients.
Keywords :
automobile industry; energy conservation; environmental economics; international trade; investment; machinery production industries; optimisation; pollution control; shipbuilding industry; automobile manufacturing industry; consumption reduction; energy intensity; export coefficients; import coefficients; investment; nonlinear optimization model construction; pollution reduction; shipbuilding industry; transportation equipment manufacturing industry; Automobiles; Energy consumption; Investment; Optimization; Shipbuilding industry;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Sciences and Optimization (CSO), 2014 Seventh International Joint Conference on
Conference_Location :
Beijing
Print_ISBN :
978-1-4799-5371-4
Type :
conf
DOI :
10.1109/CSO.2014.67
Filename :
6923694
Link To Document :
بازگشت