DocumentCode :
1204999
Title :
A complete generalized solution to the inverse kinematics of robots
Author :
Goldenberg, Andrew A. ; Benhabib, B. ; Fenton, Robert G.
Author_Institution :
University of Toronto, Toronto, ON, Canada.
Volume :
1
Issue :
1
fYear :
1985
fDate :
3/1/1985 12:00:00 AM
Firstpage :
14
Lastpage :
20
Abstract :
The kinematic transformation between task space and joint configuration coordinates is nonlinear and configuration dependent. A solution to the inverse kinematics is a vector of joint configuration coordinates that corresponds to a set of task space coordinates. For a class of robots closed form solutions always exist, but constraints on joint displacements cannot be systematically incorporated in the process of obtaining a solution. An iterative solution is presented that is suitable for any class of robots having rotary or prismatic joints, with any arbitrary number of degrees of freedom, including both standard and kinematically redundant robots. The solution can be obtained subject to specified constraints and based on certain performance criteria. The solution is based on a new rapidly convergent constrained nonlinear optimization algorithm which uses a modified Newton-Raphson technique for solving a system nonlinear equations. The algorithm is illustrated using as an example a kinematically redundant robot.
Keywords :
Robots; Closed-form solution; Constraint optimization; End effectors; Iterative methods; Manipulators; Nonlinear equations; Orbital robotics; Robot control; Robot kinematics; Service robots;
fLanguage :
English
Journal_Title :
Robotics and Automation, IEEE Journal of
Publisher :
ieee
ISSN :
0882-4967
Type :
jour
DOI :
10.1109/JRA.1985.1086995
Filename :
1086995
Link To Document :
بازگشت