DocumentCode :
1205372
Title :
Macromolecular bioactivity: is it resonant interaction between macromolecules?-theory and applications
Author :
Cosic, Irena
Author_Institution :
Dept. of Electr. & Comput. Syst. Eng., Monash Univ., Caulfield, Vic., Australia
Volume :
41
Issue :
12
fYear :
1994
Firstpage :
1101
Lastpage :
1114
Abstract :
Biological processes in any living organism are based on selective interactions between particular biomolecules. In most cases, these interactions involve and are driven by proteins which are the main conductors of any living process within the organism. The physical nature of these interactions is still not well known. The authors represent a whole new view to biomolecular interactions, in particular protein-protein and protein-DNA interactions, based on the assumption that these interactions are electromagnetic in their nature. This new approach is incorporated in the Resonant Recognition Model (RRM), which was developed over the last 10 years. It has been shown initially that certain periodicities within the distribution of energies of delocalized electrons along a protein molecule are critical for protein biological function, i.e., interaction with its target. If protein conductivity was introduced, then a charge moving through protein backbone can produce electromagnetic irradiation or absorption with spectral characteristics corresponding to energy distribution along the protein. The RRM enables these spectral characteristics, which were found to be in the range of infrared and visible light, to be calculated. These theoretically calculated spectra were proved using experimentally obtained frequency characteristics of some light-induced biological processes. Furthermore, completely new peptides with desired spectral characteristics, and consequently corresponding biological activities, were designed.
Keywords :
DNA; macromolecules; molecular biophysics; proteins; resonance; reviews; delocalized electrons; electromagnetic irradiation; infrared; light-induced biological processes; macromolecular bioactivity; peptides; protein biological function; protein molecules; resonant interaction between macromolecules; spectral characteristics; visible light; Biological processes; Biological system modeling; Conductivity; Conductors; Electrons; Molecular biophysics; Organisms; Proteins; Resonance; Spine; Amino Acid Sequence; Electromagnetic Fields; Electrophysiology; Fourier Analysis; Gene Expression; Models, Molecular; Molecular Sequence Data; Periodicity; Protein Conformation; Proteins;
fLanguage :
English
Journal_Title :
Biomedical Engineering, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9294
Type :
jour
DOI :
10.1109/10.335859
Filename :
335859
Link To Document :
بازگشت