Title :
Corrective switching algorithm for relieving overloads and voltage violations
Author :
Shao, Wei ; Vittal, Vijay
Author_Institution :
Dept. of Electr. & Comput. Eng., Iowa State Univ., Ames, IA, USA
Abstract :
It is widely known that corrective switching, including transmission line switching, bus-bar switching, and shunt element switching, may change the states of the power systems, and consequently, affect the distribution of power flows, transmission losses, short circuit currents, voltage profiles as well as transient stability of power systems. In this paper, a new algorithm is developed to find the best line and bus-bar switching action for relieving overloads and voltage violations caused by system contingencies based on a sparse inverse technique and fast decoupled power flow with limited iteration count. A general model of bus-bar switching action is also presented such that the new algorithm can simulate any kind of complicated bus-bar switching action. Furthermore, on the basis of a newly proposed voltage distribution factor by multiple iterations in power flow calculation, a novel algorithm for corrective voltage control by shunt switching is developed. These two algorithms are then integrated into a corrective switching algorithm. Simulation results on the WECC 179-bus system indicate that the new corrective switching algorithm proposed in this paper can effectively solve certain problems of line overloads and voltage violations. The computation time required is also satisfactory.
Keywords :
busbars; iterative methods; load flow; losses; power system control; power system faults; power system simulation; power system transient stability; short-circuit currents; transmission networks; voltage control; WECC 179-bus system; bus-bar switching; corrective switching algorithm; fast decoupled power flow; multiple iteration; power flow calculation; power flow distribution; power system transient stability; short circuit current; shunt element switching; sparse inverse technique; transmission line switching; transmission losses; voltage control; voltage distribution factor; voltage violation; Distributed parameter circuits; Load flow; Power system modeling; Power system stability; Power system transients; Power transmission lines; Propagation losses; Short circuit currents; Switching circuits; Voltage; Bus-bar switching; corrective switching; fast decoupled power flow; line switching; overload; shunt switching; voltage distribution factor; voltage violation;
Journal_Title :
Power Systems, IEEE Transactions on
DOI :
10.1109/TPWRS.2005.857931