DocumentCode :
1207718
Title :
System Calibration and Statistical Image Reconstruction for Ultra-High Resolution Stationary Pinhole SPECT
Author :
Van der Have, Frans J. ; Vastenhouw, Brendan ; Rentmeester, M. ; Beekman, Freek J.
Author_Institution :
Dept. of Nucl. Med., Univ. Med. Center Utrecht, Utrecht
Volume :
27
Issue :
7
fYear :
2008
fDate :
7/1/2008 12:00:00 AM
Firstpage :
960
Lastpage :
971
Abstract :
For multipinhole single-photon emission computed tomography (SPECT), iterative reconstruction algorithms are preferred over analytical methods, because of the often complex multipinhole geometries and the ability of iterative algorithms to compensate for effects like spatially variant sensitivity and resolution. Ideally, such compensation methods are based on accurate knowledge of the position-dependent point spread functions (PSFs) specifying the response of the detectors to a point source at every position in the instrument. This paper describes a method for model-based generation of complete PSF lookup tables from a limited number of point-source measurements for stationary SPECT systems and its application to a submillimeter resolution stationary small-animal SPECT system containing 75 pinholes (U-SPECT-I). The method is based on the generalization over the entire object to be reconstructed, of a small number of properties of point-source responses which are obtained at a limited number of measurement positions. The full shape of measured point-source responses can almost be preserved in newly created PSF tables. We show that these PSFs can be used to obtain high-resolution SPECT reconstructions: the reconstructed resolutions judged by rod visibility in a micro-Derenzo phantom are 0.45 mm with 0.6-mm pinholes and below 0.35 mm with 0.3-mm pinholes. In addition, we show that different approximations, such as truncating the PSF kernel, with significant reduction of reconstruction time, can still lead to acceptable reconstructions.
Keywords :
calibration; image reconstruction; image resolution; iterative methods; medical image processing; optical transfer function; phantoms; single photon emission computed tomography; statistical analysis; table lookup; PSF kernel; complete PSF lookup tables; complex multipinhole geometries; detectors response; instrument position; iterative reconstruction algorithms; measured point-source responses; microDerenzo phantom; multipinhole single-photon emission computed tomography; position-dependent point spread functions; reconstruction time reduction; rod visibility; size 0.3 mm; size 0.35 mm; size 0.45 mm; size 0.6 mm; spatially variant sensitivity; statistical image reconstruction; submillimeter resolution stationary small-animal SPECT system; system calibration; ultra-high resolution stationary pinhole SPECT; Algorithm design and analysis; Calibration; Computational geometry; Computed tomography; Image reconstruction; Image resolution; Iterative methods; Reconstruction algorithms; Shape measurement; Spatial resolution; Calibration; SPECT; calibration; pinhole; reconstruction; single-photon emission computed tomography (SPECT); Algorithms; Biometry; Calibration; Equipment Failure Analysis; Feedback; Image Processing, Computer-Assisted; Models, Theoretical; Phantoms, Imaging; Sensitivity and Specificity; Tomography, Emission-Computed, Single-Photon;
fLanguage :
English
Journal_Title :
Medical Imaging, IEEE Transactions on
Publisher :
ieee
ISSN :
0278-0062
Type :
jour
DOI :
10.1109/TMI.2008.924644
Filename :
4505843
Link To Document :
بازگشت