DocumentCode :
1208181
Title :
Refinements of Pinsker´s inequality
Author :
Fedotov, Alexei A. ; Harremoës, Peter ; Topsøe, Flemming
Author_Institution :
Dept. of Inf. Technol., Inst. of Computational Technol., Novosibirsk, Russia
Volume :
49
Issue :
6
fYear :
2003
fDate :
6/1/2003 12:00:00 AM
Firstpage :
1491
Lastpage :
1498
Abstract :
Let V and D denote, respectively, total variation and divergence. We study lower bounds of D with V fixed. The theoretically best (i.e., largest) lower bound determines a function L=L(V), Vajda´s (1970) tight lower bound. The main result is an exact parametrization of L. This leads to Taylor polynomials which are lower bounds for L, and thereby to extensions of the classical Pinsker (1960) inequality which has numerous applications, cf. Pinsker and followers.
Keywords :
information theory; polynomials; probability; set theory; Pinsker´s inequality; Taylor polynomials; Vaida´s tight lower bound; convex set; divergence; exact parametrization; information diagram; information theory; lower bounds; probability measures; total variation; Additives; Councils; Entropy; Information technology; Information theory; Mathematics; Notice of Violation; Polynomials; Random variables; Upper bound;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2003.811927
Filename :
1201071
Link To Document :
بازگشت