Title :
On the multidimensional extension of the quincunx subsampling matrix
Author :
Van De Ville, D. ; Blu, T. ; Unser, M.
Author_Institution :
Biomed. Imaging Group, Swiss Fed. Inst. of Technol. Lausanne, Switzerland
Abstract :
The dilation matrix associated with the three-dimensional (3-D) face-centered cubic (FCC) sublattice is often considered to be the natural 3-D extension of the two-dimensional (2-D) quincunx dilation matrix. However, we demonstrate that both dilation matrices are of different nature: while the 2-D quincunx matrix is a similarity transform, the 3-D FCC matrix is not. More generally, we show that is impossible to obtain a dilation matrix that is a similarity transform and performs downsampling of the Cartesian lattice by a factor of two in more than two dimensions. Furthermore, we observe that the popular 3-D FCC subsampling scheme alternates between three different lattices: Cartesian, FCC, and quincunx. The latter one provides a less isotropic sampling density, a property that should be taken into account to properly orient 3-D data before processing using such a subsampling matrix.
Keywords :
channel bank filters; discrete wavelet transforms; matrix algebra; signal sampling; 3D face-centered cubic sublattice; Cartesian lattice; FCC; Quincunx subsampling matrix; dilation matrix; isotropic sampling density; two-channel filterbanks; wavelet decomposition; Biomedical imaging; Discrete wavelet transforms; FCC; Lattices; Matrix decomposition; Multidimensional signal processing; Multidimensional systems; Sampling methods; Two dimensional displays; 2-D quincunx sampling; 3-D FCC sampling; Nonseparable design; two-channel filterbanks; wavelet decomposition;
Journal_Title :
Signal Processing Letters, IEEE
DOI :
10.1109/LSP.2004.839697