DocumentCode :
1209234
Title :
Revisiting autoregressive hidden Markov modeling of speech signals
Author :
Ephraim, Y. ; Roberts, W.J.J.
Author_Institution :
Dept. of Electr. & Comput. Eng., George Mason Univ., Fairfax, VA, USA
Volume :
12
Issue :
2
fYear :
2005
Firstpage :
166
Lastpage :
169
Abstract :
Linear predictive hidden Markov modeling is compared with a simple form of the switching autoregressive process. The latter process captures existing signal correlation during transitions of the Markov chain. Parameter estimation is described using naturally stable forward-backward recursions. The switching autoregressive model outperformed the linear predictive model in a digit recognition task and provided comparable performance to a cepstral-based recognizer.
Keywords :
autoregressive processes; hidden Markov models; parameter estimation; speech recognition; digit recognition; hidden Markov modeling; linear predictive modeling; parameter estimation; signal correlation; speech recognition; speech signal; stable forward-backward recursion; switching autoregressive model; Autoregressive processes; Hidden Markov models; Parameter estimation; Prediction algorithms; Predictive models; Probability; Shape; Signal processing; Speech processing; Vectors; Speech recognition; switching autoregressive processes;
fLanguage :
English
Journal_Title :
Signal Processing Letters, IEEE
Publisher :
ieee
ISSN :
1070-9908
Type :
jour
DOI :
10.1109/LSP.2004.840914
Filename :
1381477
Link To Document :
بازگشت