DocumentCode :
1213585
Title :
On the identifiability of non-Gaussian ARMA models using cumulants
Author :
Giannakis, Georgios B.
Author_Institution :
Dept. of Electr. Eng., Virginia Univ., Charlottesville, VA, USA
Volume :
35
Issue :
1
fYear :
1990
fDate :
1/1/1990 12:00:00 AM
Firstpage :
18
Lastpage :
26
Abstract :
A fixed set of output cumulants of order greater than two guarantees unique identification of known-order causal ARMA (autoregressive moving-average) models, which are driven by unobservable non-Gaussian i.i.d. noise. The models are allowed to be non-minimum-phase, and their outputs may be corrupted by additive colored Gaussian noise of unknown covariance. The ARMA parameters can be estimated either by means of linear equations and closed-form expressions or by minimizing quadratic cumulant matching criteria. The latter approach requires computation of cumulants in terms of the ARMA parameters, which is carried out in the state space using Kronecker products
Keywords :
noise; parameter estimation; state-space methods; time series; Kronecker products; additive colored Gaussian noise; autoregressive moving-average; identification; linear equations; nonGaussian ARMA models; output cumulants; parameter estimation; quadratic cumulant matching criteria; state space methods; time series; Additive noise; Autocorrelation; Closed-form solution; Equations; Frequency domain analysis; Gaussian noise; Helium; Parameter estimation; State-space methods; Taylor series;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/9.45139
Filename :
45139
Link To Document :
بازگشت