DocumentCode :
1213921
Title :
Parametric Image Alignment Using Enhanced Correlation Coefficient Maximization
Author :
Evangelidis, Georgios D. ; Psarakis, Emmanouil Z.
Author_Institution :
Dept. of Comput. Eng. & Inf., Univ. of Patras, Patras
Volume :
30
Issue :
10
fYear :
2008
Firstpage :
1858
Lastpage :
1865
Abstract :
In this work we propose the use of a modified version of the correlation coefficient as a performance criterion for the image alignment problem. The proposed modification has the desirable characteristic of being invariant with respect to photometric distortions. Since the resulting similarity measure is a nonlinear function of the warp parameters, we develop two iterative schemes for its maximization, one based on the forward additive approach and the second on the inverse compositional method. As it is customary in iterative optimization, in each iteration the nonlinear objective function is approximated by an alternative expression for which the corresponding optimization is simple. In our case we propose an efficient approximation that leads to a closed form solution (per iteration) which is of low computational complexity, the latter property being particularly strong in our inverse version. The proposed schemes are tested against the forward additive Lucas-Kanade and the simultaneous inverse compositional algorithm through simulations. Under noisy conditions and photometric distortions our forward version achieves more accurate alignments and exhibits faster convergence whereas our inverse version has similar performance as the simultaneous inverse compositional algorithm but at a lower computational complexity.
Keywords :
computational complexity; distortion; image processing; iterative methods; optimisation; computational complexity; enhanced correlation coefficient maximization; forward additive Lucas-Kanade method; forward additive approach; inverse compositional method; iterative optimization; iterative schemes; nonlinear objective function; parametric image alignment; photometric distortions; similarity measure; warp parameters; Gradient methods; Image Processing and Computer Vision; Motion; Registration; Algorithms; Artificial Intelligence; Computer Simulation; Image Enhancement; Image Interpretation, Computer-Assisted; Models, Statistical; Pattern Recognition, Automated; Subtraction Technique;
fLanguage :
English
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
Publisher :
ieee
ISSN :
0162-8828
Type :
jour
DOI :
10.1109/TPAMI.2008.113
Filename :
4515873
Link To Document :
بازگشت