Author :
Dagens, B. ; Make, D. ; Lelarge, F. ; Rousseau, B. ; Calligaro, M. ; Carbonnelle, M. ; Pommereau, F. ; Accard, A. ; Poingt, F. ; Le Gouezigou, L. ; Dernazaretian, C. ; Le Gouezigou, O. ; Provost, J.-G. ; van Dijk, F. ; Resneau, P. ; Krakowski, M. ; Duan,
Abstract :
The modulation bandwidth has been identified as a specific limitation of quantum-dot or quantum-dash (QDash) lasers for direct modulation application. Solutions using tunnel injection and p-doping have already been demonstrated to increase the modulation bandwidth above 10 GHz, but with complex tunnel injection design and p-doping induced high internal losses. We show in this letter that the use of optimized QDashes and waveguide structure is sufficient to reach such high bandwidth at 1.55 mum. The device is validated by a large signal modulation demonstration at 10 Gb/s.
Keywords :
III-V semiconductors; indium compounds; optical modulation; quantum dot lasers; semiconductor doping; waveguide lasers; InAs-InP; QDash lasers; bit rate 10 Gbit/s; directly modulated laser; high bandwidth operation; modulation bandwidth; p-doping; quantum-dash InAs-InP material; quantum-dash lasers; quantum-dot lasers; tunnel injection; waveguide structure; wavelength 1.55 mum; Bandwidth; Gas lasers; Laser feedback; Molecular beam epitaxial growth; Optical materials; Optical modulation; Optical waveguides; Quantum dots; Threshold current; Waveguide lasers; InAs–InP quantum dashes (QDashes); InGaAsP–InP lasers; directly modulated laser; gas source molecular beam epitaxy; modulation bandwidth; optical communication;