DocumentCode :
1215243
Title :
Estimating time-varying parameters by the Kalman filter based algorithm: stability and convergence
Author :
Guo, Lei
Author_Institution :
Dept. of Syst. Eng., Australian Nat. Univ., Canberra, ACT, Australia
Volume :
35
Issue :
2
fYear :
1990
fDate :
2/1/1990 12:00:00 AM
Firstpage :
141
Lastpage :
147
Abstract :
Convergence and stability properties of the Kalman filter-based parameter estimator are established for linear stochastic time-varying regression models. The main features are: both the variances and sample path averages of the parameter tracking error are shown to be bounded; the regression vector includes both stochastic and deterministic signals, and no assumptions of stationarity or independence are requires; and the unknown parameters are only assumed to have bounded variations in an average sense
Keywords :
Kalman filters; convergence; parameter estimation; stability; statistics; Kalman filter-based parameter estimator; bounded variations; convergence; deterministic signals; linear stochastic time-varying regression models; parameter tracking error; regression vector; sample path averages; stability; stochastic signals; time-varying parameters; variances; Bayesian methods; Convergence; Linear regression; Parameter estimation; Signal processing algorithms; Stability; Stochastic processes; Stochastic resonance; Systems engineering and theory; Vectors;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/9.45169
Filename :
45169
Link To Document :
بازگشت