Title :
Information theoretic feature extraction to reduce dimensionality of Genetic Network Programming based intrusion detection model
Author :
Arya, A. ; Kumar, Sudhakar
Author_Institution :
Dept. of Comput. Sci. & Eng., Krishna Inst. of Eng. & Technol., Ghaziabad, India
Abstract :
Intrusion detection techniques require examining high volume of audit records so it is always challenging to extract minimal set of features to reduce dimensionality of the problem while maintaining efficient performance. Previous researchers analyzed Genetic Network Programming framework using all 41 features of KDD cup 99 dataset and found the efficiency of more than 90% at the cost of high dimensionality. We are proposing a new technique for the same framework with low dimensionality using information theoretic approach to select minimal set of features resulting in six attributes and giving the accuracy very close to their result. Feature selection is based on the hypothesis that all features are not at same relevance level with specific class. Simulation results with KDD cup 99 dataset indicates that our solution is giving accurate results as well as minimizing additional overheads.
Keywords :
feature extraction; feature selection; genetic algorithms; information theory; security of data; KDD cup 99 dataset; audit records; dimensionality reduction; feature selection; genetic network programming based intrusion detection model; information theoretic feature extraction; Artificial intelligence; Correlation; Association rule; Discretization; Feature Selection; GNP;
Conference_Titel :
Issues and Challenges in Intelligent Computing Techniques (ICICT), 2014 International Conference on
Conference_Location :
Ghaziabad
DOI :
10.1109/ICICICT.2014.6781248