Title :
A fuzzy logic based-method for prognostic decision making in breast and prostate cancers
Author :
Seker, Huseyin ; Odetayo, Michael O. ; Petrovic, Dobrila ; Naguib, Raouf N G
Author_Institution :
Biomed. Comput. Res. Group, Coventry Univ., UK
fDate :
6/1/2003 12:00:00 AM
Abstract :
Accurate and reliable decision making in oncological prognosis can help in the planning of suitable surgery and therapy, and generally, improve patient management through the different stages of the disease. In recent years, several prognostic markers have been used as indicators of disease progression in oncology. However, the rapid increase in the discovery of novel prognostic markers resulting from the development in medical technology, has dictated the need for developing reliable methods for extracting clinically significant markers where complex and nonlinear interactions between these markers naturally exist. The aim of this paper is to investigate the fuzzy k-nearest neighbor (FK-NN) classifier as a fuzzy logic method that provides a certainty degree for prognostic decision and assessment of the markers, and to compare it with: 1) logistic regression as a statistical method and 2) multilayer feedforward backpropagation neural networks an artificial neural-network tool, the latter two techniques having been widely used for oncological prognosis. In order to achieve this aim, breast and prostate cancer data sets are considered as benchmarks for this analysis. The overall results obtained indicate that the FK-NN-based method yields the highest predictive accuracy, and that it has produced a more reliable prognostic marker model than both the statistical and artificial neural-network-based methods.
Keywords :
cancer; diagnostic expert systems; feedforward neural nets; fuzzy set theory; medical expert systems; medical image processing; artificial neural-network tool; breast cancer; decision making; disease progression; fuzzy k-nearest neighbor classifier; fuzzy logic method; multilayer feedforward backpropagation neural networks; neural-network-based methods; oncological prognosis; oncology; patient management; prognostic decision; prognostic marker model; prognostic markers; prostate cancer; Breast; Decision making; Diseases; Fuzzy logic; Fuzzy neural networks; Medical treatment; Multi-layer neural network; Oncological surgery; Oncology; Prostate cancer; Aged; Aged, 80 and over; Algorithms; Breast Neoplasms; Decision Making, Computer-Assisted; Fuzzy Logic; Great Britain; Humans; Male; Middle Aged; Models, Biological; Models, Statistical; Neural Networks (Computer); Pattern Recognition, Automated; Prognosis; Prostatic Neoplasms; Reproducibility of Results; Risk Assessment; Risk Factors; Sensitivity and Specificity; Survival Analysis; Tumor Markers, Biological;
Journal_Title :
Information Technology in Biomedicine, IEEE Transactions on
DOI :
10.1109/TITB.2003.811876