DocumentCode :
1217078
Title :
Plasma Processes Driven by Current Sheets and Their Relevance to the Auroral Plasma
Author :
Singh, Nagendra ; Thiemann, H. ; Schunk, R.W.
Volume :
14
Issue :
6
fYear :
1986
Firstpage :
805
Lastpage :
822
Abstract :
Satellite and rocket observations have revealed a host of auroral plasma processes, including large dc perpendicular electric fields (E¿) associated with electrostatic shocks, relatively weak parallel electric fields (E¿) associated with double layers, upflowing ions in the form of beams and conics, downflowing and upflowing accelerated electron beams, several wave modes such as the electrostatic ion-cyclotron (EIC), lower hybrid (LH), very low frequency (VLF), extremely low frequency (ELF), and high-frequency waves and associated nonlinear phenomena. Recently, we have attempted to simulate the various processes using a two-dimensional particle-in-cell code in which the plasma is driven by current sheets of a finite thickness. Striking similarities between the observed auroral plasma processes and those seen in the simulations are found. In this paper we give a review of the plasma processes dealing with dc and ac electric fields, formation of ion beams and conics, and electron acceleration. Electrostatic shock-type electric fields (E¿e) occur near the current sheet edges. Such fields arise because of the contact between the high-and low-density plasmas inside and outside the sheet, respectively. Double layers having upward electric fields form inside the sheet and they are distinguishable from the large perpendicular electric fields (E¿e) only in wide sheets with thicknesses l >> ¿i, the ion Larmor radius. Double layers with a reverse polarity form outside the sheet where downward currents flow. The most energetic ions are found to have pitch angles near 90°, implying a large perpendicular acceleration of the ions.
Keywords :
Acceleration; Electric fields; Electron beams; Electrostatics; Frequency; Plasma accelerators; Plasma simulation; Plasma waves; Rockets; Satellites;
fLanguage :
English
Journal_Title :
Plasma Science, IEEE Transactions on
Publisher :
ieee
ISSN :
0093-3813
Type :
jour
DOI :
10.1109/TPS.1986.4316629
Filename :
4316629
Link To Document :
بازگشت