DocumentCode :
1217329
Title :
On-line identification of hidden Markov models via recursive prediction error techniques
Author :
Collings, Iain B. ; Krishnamurthy, Vikram ; Moore, John B.
Author_Institution :
Dept. of Syst. Eng., Australian Nat. Univ., Canberra, ACT, Australia
Volume :
42
Issue :
12
fYear :
1994
fDate :
12/1/1994 12:00:00 AM
Firstpage :
3535
Lastpage :
3539
Abstract :
An on-line state and parameter identification scheme for hidden Markov models (HMMs) with states in a finite-discrete set is developed using recursive prediction error (RPE) techniques. The parameters of interest are the transition probabilities and discrete state values of a Markov chain. The noise density associated with the observations can also be estimated. Implementation aspects of the proposed algorithms are discussed, and simulation studies are presented to show that the algorithms converge for a wide variety of initializations. In addition, an improved version of an earlier proposed scheme (the Recursive Kullback-Leibler (RKL) algorithm) is presented with a parameterization that ensures positivity of transition probability estimates
Keywords :
error analysis; hidden Markov models; noise; parameter estimation; prediction theory; probability; recursive estimation; signal processing; HMM; Markov chain; discrete state values; finite-discrete set; hidden Markov models; initializations; noise density; observations; on-line identification; parameter identification; recursive Kullback-Leibler algorithm; recursive prediction error techniques; signal model; signal processing; simulation studies; transition probabilities; Adaptive signal processing; Biomedical signal processing; Convergence; Entropy; Hidden Markov models; Kernel; Signal processing; Signal processing algorithms; Speech processing; Time frequency analysis;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/78.340791
Filename :
340791
Link To Document :
بازگشت