DocumentCode :
1223625
Title :
Characterization of process-induced mobile ions on the data retention in flash memory
Author :
Liou, Jimmy Jih-Wei ; Huang, Chih-Jen ; Chen, Hwi-Huang ; Hong, Gary
Author_Institution :
United Microelectron. Corp., Hsinchu, Taiwan
Volume :
50
Issue :
4
fYear :
2003
fDate :
4/1/2003 12:00:00 AM
Firstpage :
995
Lastpage :
1000
Abstract :
Data retention is a major issue that significantly affects the reliability of nonvolatile memory. In this paper, data retention behaviors due to mobile ions are extensively characterized by using several test methods. The source of mobile ions during the sputtering of Ti/TiN layers for forming salicide inside array was identified by secondary ion mass spectroscopy (SIMS) analysis. Different test sequences clearly reveal the data retention caused by mobile ions. Salicide block material that includes silicon nitride effectively blocks the impact of mobile ions. Bitmapping patterns on an array indicate that the amount of charge loss spatially depends on its neighbor´s high-Vth cells via the Coulomb´s r-square field. The spatial effects of neighboring cells on the charge loss are then estimated. Beyond 1.98 μm, the charge loss caused by mobile ions of a individual cell becomes unaffected by the Vth state of its neighboring cells. Plasma charging cells also attract mobile ions. A considerable charge gain, by as much as 0.8 V with a radial distribution on fresh wafer, was observed after a UV-bake test. The interaction between plasma charging effect and mobile ions movement during wafer processing explains this interesting feature.
Keywords :
flash memories; integrated circuit reliability; integrated circuit testing; life testing; production testing; secondary ion mass spectroscopy; 1.98 micron; Coulomb´s r-square field; SIMS; Ti-TiN; UV-bake test; bitmapping patterns; data retention; flash memory; plasma charging cells; process-induced mobile ions; reliability; salicide inside array; sputtering; test sequences; wafer processing; Contamination; Dielectric losses; Flash memory; Nonvolatile memory; Plasma materials processing; Pollution measurement; Production; Sputtering; Testing; Thermal stresses;
fLanguage :
English
Journal_Title :
Electron Devices, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9383
Type :
jour
DOI :
10.1109/TED.2003.812081
Filename :
1206883
Link To Document :
بازگشت