DocumentCode :
1225329
Title :
Covering codes with improved density
Author :
Krivelevich, Michael ; Sudakov, Benny ; Vu, Van H.
Author_Institution :
Dept. of Math., Tel-Aviv Univ., Israel
Volume :
49
Issue :
7
fYear :
2003
fDate :
7/1/2003 12:00:00 AM
Firstpage :
1812
Lastpage :
1815
Abstract :
We prove a general recursive inequality concerning μ*(R), the asymptotic (least) density of the best binary covering codes of radius R. In particular, this inequality implies that μ*(R)≤e·(RlogR+logR+loglogR+2), which significantly improves the best known density 2RRR(R+1)/R!. Our inequality also holds for covering codes over arbitrary alphabets.
Keywords :
binary codes; set theory; asymptotic density; binary covering codes; code density; code radius; set theory; Error correction codes; Hamming distance; Hypercubes; Mathematics; Upper bound;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2003.813490
Filename :
1207380
Link To Document :
بازگشت