• DocumentCode
    1225329
  • Title

    Covering codes with improved density

  • Author

    Krivelevich, Michael ; Sudakov, Benny ; Vu, Van H.

  • Author_Institution
    Dept. of Math., Tel-Aviv Univ., Israel
  • Volume
    49
  • Issue
    7
  • fYear
    2003
  • fDate
    7/1/2003 12:00:00 AM
  • Firstpage
    1812
  • Lastpage
    1815
  • Abstract
    We prove a general recursive inequality concerning μ*(R), the asymptotic (least) density of the best binary covering codes of radius R. In particular, this inequality implies that μ*(R)≤e·(RlogR+logR+loglogR+2), which significantly improves the best known density 2RRR(R+1)/R!. Our inequality also holds for covering codes over arbitrary alphabets.
  • Keywords
    binary codes; set theory; asymptotic density; binary covering codes; code density; code radius; set theory; Error correction codes; Hamming distance; Hypercubes; Mathematics; Upper bound;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.2003.813490
  • Filename
    1207380