DocumentCode :
1225413
Title :
A new metric for probability distributions
Author :
Endres, Dominik M. ; Schindelin, Johannes E.
Author_Institution :
Sch. of Psychol., Univ. of St Andrews, UK
Volume :
49
Issue :
7
fYear :
2003
fDate :
7/1/2003 12:00:00 AM
Firstpage :
1858
Lastpage :
1860
Abstract :
We introduce a metric for probability distributions, which is bounded, information-theoretically motivated, and has a natural Bayesian interpretation. The square root of the well-known χ2 distance is an asymptotic approximation to it. Moreover, it is a close relative of the capacitory discrimination and Jensen-Shannon divergence.
Keywords :
Bayes methods; information theory; probability; χ2 distance; Bayesian interpretation; Jensen-Shannon divergence; asymptotic approximation; bounded information-theoretically motivated metric; capacitory discrimination; probability distributions; square root; Adaptive estimation; Algorithm design and analysis; Bayesian methods; Convergence; Gaussian noise; Iterative algorithms; Probability distribution; Wavelet analysis; White noise; Writing;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2003.813506
Filename :
1207388
Link To Document :
بازگشت