Title :
Coherent Multiscale Image Processing Using Dual-Tree Quaternion Wavelets
Author :
Chan, Wai Lam ; Choi, Hyeokho ; Baraniuk, Richard G.
Author_Institution :
Dept. of Electr. & Comput. Eng., Rice Univ., Houston, TX
fDate :
7/1/2008 12:00:00 AM
Abstract :
The dual-tree quaternion wavelet transform (QWT) is a new multiscale analysis tool for geometric image features. The QWT is a near shift-invariant tight frame representation whose coefficients sport a magnitude and three phases: two phases encode local image shifts while the third contains image texture information. The QWT is based on an alternative theory for the 2D Hilbert transform and can be computed using a dual-tree filter bank with linear computational complexity. To demonstrate the properties of the QWT´s coherent magnitude/phase representation, we develop an efficient and accurate procedure for estimating the local geometrical structure of an image. We also develop a new multiscale algorithm for estimating the disparity between a pair of images that is promising for image registration and flow estimation applications. The algorithm features multiscale phase unwrapping, linear complexity, and sub-pixel estimation accuracy.
Keywords :
Hilbert transforms; channel bank filters; computational complexity; image registration; image representation; image texture; trees (mathematics); wavelet transforms; 2D Hilbert transform; coherent multiscale image processing; dual-tree filter bank; dual-tree quaternion wavelet transform; flow estimation; frame representation; geometric image features; image registration; image texture information; linear computational complexity; local geometrical structure; local image shifts; multiscale algorithm; multiscale analysis tool; multiscale phase unwrapping; subpixel estimation accuracy; Coherent processing; dual-tree; multiscale disparity estimation; phase; quaternion; wavelets; Algorithms; Artificial Intelligence; Image Enhancement; Image Interpretation, Computer-Assisted; Imaging, Three-Dimensional; Pattern Recognition, Automated; Reproducibility of Results; Sensitivity and Specificity; Signal Processing, Computer-Assisted; Tomography, Optical Coherence;
Journal_Title :
Image Processing, IEEE Transactions on
DOI :
10.1109/TIP.2008.924282