Title :
Analysis of subspace fitting and ML techniques for parameter estimation from sensor array data
Author :
Ottersten, Björn ; Viberg, Mats ; Kailath, Thomas
Author_Institution :
Dept. of Telecommun. Theory, R. Inst. of Technol., Stockholm, Sweden
fDate :
3/1/1992 12:00:00 AM
Abstract :
It is shown that the multidimensional signal subspace method, termed weighted subspace fitting (WSF), is asymptotically efficient. This results in a novel, compact matrix expression for the Cramer-Rao bound (CRB) on the estimation error variance. The asymptotic analysis of the maximum likelihood (ML) and WSF methods is extended to deterministic emitter signals. The asymptotic properties of the estimates for this case are shown to be identical to the Gaussian emitter signal case, i.e. independent of the actual signal waveforms. Conclusions concerning the modeling aspect of the sensor array problem are drawn
Keywords :
detectors; matrix algebra; parameter estimation; signal processing; CRB; Cramer-Rao bound; Gaussian emitter signal; asymptotic analysis; asymptotic properties; deterministic emitter signals; estimation error variance; matrix equation; maximum likelihood technique; multidimensional signal subspace method; parameter estimation; sensor array data; signal waveforms; weighted subspace fitting; Acoustic arrays; Acoustic sensors; Array signal processing; Estimation error; Gaussian noise; Maximum likelihood estimation; Microwave antenna arrays; Parameter estimation; Sensor arrays; Stochastic processes;
Journal_Title :
Signal Processing, IEEE Transactions on