• DocumentCode
    1227578
  • Title

    An upper bound for the recursive least squares estimation error

  • Author

    Niederlinski, A.

  • Author_Institution
    Inst. Autom., Politech. Slaska, Gliwice
  • Volume
    40
  • Issue
    9
  • fYear
    1995
  • fDate
    9/1/1995 12:00:00 AM
  • Firstpage
    1655
  • Lastpage
    1660
  • Abstract
    A new upper bound for the convergence rate of recursive least squares (RLS) errors is presented. The bound is free of some deficiencies of a cell-known RLS upper bound and allows a realistic assessment of factors influencing convergence rate, such as input-output data scaling, disturbances, signal-to-noise ratio, number of estimated parameters, data discounting, and excitation properties of plant inputs. Some of the properties of the new bound are discussed
  • Keywords
    convergence of numerical methods; differential equations; eigenvalues and eigenfunctions; error statistics; least squares approximations; parameter estimation; stochastic processes; S/N ratio; SISO ARX plants; convergence rate; data discounting; eigenvalue; estimation error; input-output data scaling; parameter estimation; recursive least squares error; stochastic difference equation; upper bound; Convergence; Estimation error; Least squares approximation; Lyapunov method; MIMO; Parameter estimation; Resonance light scattering; Signal to noise ratio; Upper bound; White noise;
  • fLanguage
    English
  • Journal_Title
    Automatic Control, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9286
  • Type

    jour

  • DOI
    10.1109/9.412640
  • Filename
    412640