DocumentCode :
1229884
Title :
Accurate attenuation correction in PET using short transmission scans and consistency information
Author :
Welch, Andy ; Hallett, William ; Marsden, Paul ; Bromiley, Andrew
Author_Institution :
Dept. of Biomed. Phys. & Bioeng., John Mallard Scottish PET Centre, Aberdeen, UK
Volume :
50
Issue :
3
fYear :
2003
fDate :
6/1/2003 12:00:00 AM
Firstpage :
427
Lastpage :
432
Abstract :
The authors show how the consistency conditions of the Radon transform can be used to aid attenuation correction in positron emission tomography (PET) using short transmission scans. The technique is expected to be useful in situations where limited time is available for transmission imaging (e.g., whole-body PET). The proposed method uses 2-min transmission scans that are reconstructed and then segmented into regions of uniform attenuation. Consistency information is used to determine the thresholds for segmentation of the transmission image and the attenuation coefficients. In particular, a downhill simplex algorithm is used to find the parameters that are most consistent with the measured emission data. One potential advantage of the proposed technique over conventional segmentation methods (which work purely on the transmission data) is that the emission data are used to drive the segmentation process. Therefore, the technique should produce the attenuation image that is most appropriate for attenuation correction. The algorithm is tested using simulated data and compared with an adaptive thresholding technique using clinical PET data. The results show that the method produces reconstructed images with similar accuracy and noise levels to those obtained using a 10 min transmission scan. The results also show that the proposed technique has some advantages over the adaptive thresholding technique when imaging the abdomen. The authors conclude that the proposed technique may provide a viable means of producing quantitatively accurate whole-body PET images in a clinically feasible time.
Keywords :
image reconstruction; image segmentation; medical image processing; positron emission tomography; 10 min; 2 min; PET; Radon transform; abdomen; adaptive thresholding technique; attenuation correction; consistency information; downhill simplex algorithm; image reconstruction; image segmentation; positron emission tomography; short transmission scans; transmission scans; uniform attenuation; Abdomen; Attenuation; Biomedical engineering; Image reconstruction; Image segmentation; Noise level; Particle measurements; Positron emission tomography; Testing; Whole-body PET;
fLanguage :
English
Journal_Title :
Nuclear Science, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9499
Type :
jour
DOI :
10.1109/TNS.2003.812451
Filename :
1208606
Link To Document :
بازگشت