Title :
Carrier dynamics and high-speed modulation properties of tunnel injection InGaAs-GaAs quantum-dot lasers
Author :
Bhattacharya, Pallab ; Ghosh, Siddhartha ; Pradhan, Sameer ; Singh, Jasprit ; Wu, Zong-Kwei ; Urayama, J. ; Kim, Kyoungsik ; Norris, Theodore B.
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., Univ. of Michigan, Ann Arbor, MI, USA
Abstract :
We have performed pump-probe differential transmission spectroscopy (DTS) measurements on In0.4Ga0.6As-GaAs-AlGaAs heterostructures, which show that at room temperature, injected electrons preferentially occupy the excited states in the dots and states in the barriers layers. The relaxation time of these carriers to the dot ground state is >100 ps. This leads to large gain compression in quantum-dot (QD) lasers and limits the attainable small-signal modulation bandwidth to ∼ 5-7 GHz. The problem can be alleviated by tunneling "cold" electrons into the lasing states of the dots from an adjoining injector layer. The design, growth, and steady-state and small-signal modulation characteristics of tunnel injection In0.4Ga0.6As-GaAs QD lasers are described and discussed. The tunneling times, directly measured by three-pulse DTS measurements, are ∼ 1.7 ps and independent of temperature. The measured small-signal modulation bandwidth for I/Ith ∼ 7 is f-3 dB = 23 GHz and the gain compression factor for this frequency response is ε = 8.2 × 10-16 cm3. The differential gain obtained from the modulation data is dg/dn ≅ 2.7 × 10-14 cm2 at room temperature. The value of the K-factor is 0.205 ns and the maximum intrinsic modulation bandwidth is 43.3 GHz. Analysis of the transient characteristics with appropriate carrier and photon rate equations yield modulation response characteristics identical to the measured ones. The Auger coefficients are in the range ∼ 3.3 × 10-29 cm6/s to 3.8 × 10-29 cm6/s in the temperature range 15°C\n\n\t\t
Keywords :
III-V semiconductors; carrier relaxation time; electron-hole recombination; excited states; frequency response; gallium arsenide; high-speed optical techniques; indium compounds; infrared spectra; optical modulation; quantum dot lasers; semiconductor quantum dots; transient analysis; tunnelling; 1.7 ps; 15 to 85 C; 23 GHz; 43.3 GHz; Auger coefficients; In0.4Ga0.6As-GaAs-AlGaAs; In0.4Ga0.6As-GaAs-AlGaAs heterostructures; InGaAs-GaAs quantum-dot lasers; K-factor; carrier dynamics; carrier rate equations; carrier relaxation time; cold electron tunneling; differential gain; dot ground state; excited states; frequency response; gain compression; high-speed modulation properties; injected electrons; injector layer; large-signal modulation measurements; maximum intrinsic modulation bandwidth; modulation response characteristics; photon rate equations; pump-probe differential transmission spectroscopy; small-signal modulation bandwidth; small-signal modulation characteristics; steady-state modulation characteristics; transient characteristics; tunnel injection; tunneling times; Bandwidth; Electrons; Land surface temperature; Laser excitation; Performance evaluation; Quantum dot lasers; Spectroscopy; Stationary state; Transient analysis; Tunneling;
Journal_Title :
Quantum Electronics, IEEE Journal of
DOI :
10.1109/JQE.2003.814374