Title :
Adaptive learning approach to landmine detection
Author :
Sun, Yijun ; Li, Jian
Author_Institution :
Dept. of Electr. & Comput. Eng., Florida Univ., Gainesville, FL, USA
fDate :
7/1/2005 12:00:00 AM
Abstract :
We consider landmine detection using forward-looking ground penetrating radar (FLGPR). The two main challenging tasks include extracting intricate structures of target signals and adapting a classifier to the surrounding environment through learning. Through the time-frequency (TF) analysis, we find that the most discriminant information is TF localized. This observation motivates us to use the over-complete wavelet packet transform (WPT) to sparsely represent signals with the discriminant information encoded into several bases. Then the sequential floating forward selection method is used to extract these components and thereby a neural network (NNW) classifier is designed. To further improve the classification performance and deal with the problem of detecting mines in an unconstraint environment, the AdaBoost algorithm is used. We integrate the feature selection process into the original AdaBoost algorithm. In each iteration, AdaBoost identifies the hard-to-learn examples and a new set of features which provide the specific discriminant information for these hard samples is extracted adaptively and a new classifier is trained. Experimental results based on measured data are presented, showing that a significant improvement on the classification performance can be achieved.
Keywords :
ground penetrating radar; landmine detection; learning (artificial intelligence); learning systems; neural nets; signal classification; time-frequency analysis; wavelet transforms; AdaBoost algorithm; FLGPR; WPT; adaptive learning; feature selection; forward-looking ground penetrating radar; landmine detection; neural network classifier; time-frequency analysis; wavelet packet transform; Data mining; Forward contracts; Ground penetrating radar; Information analysis; Land vehicles; Landmine detection; Radar antennas; Radar detection; Radar imaging; Road vehicles;
Journal_Title :
Aerospace and Electronic Systems, IEEE Transactions on
DOI :
10.1109/TAES.2005.1541442