DocumentCode :
1239050
Title :
Automatic mesh generation for mobile network dimensioning using evolutionary approach
Author :
Créput, Jean-Charles ; Koukam, Abderrafiaa ; Lissajoux, Thomas ; Caminada, Alexandre
Author_Institution :
Syst. & Transp.s Lab., Univ. of Technol. of Belfort-Montbeliard, Belfort, France
Volume :
9
Issue :
1
fYear :
2005
Firstpage :
18
Lastpage :
30
Abstract :
We focus on the dimensioning process of cellular networks that addresses the evaluation of equipment global costs to cover a city. To deal with frequency assignment, that constitutes the most critical resource in mobile systems, the network is usually modeled as a pattern of regular hexagonal cells. Each cell represents the area covered by the signal of a transmitter or base station (BS). Our work emphasizes on the design of irregular hexagonal cells in an adaptive way. Hexagons transform themselves and adapt their shapes according to a traffic density map and to geometrical constraints. This process, called adaptive meshing (AM), may be seen as a solution to minimize the required number of BS to cover a region and to propose a basis for transmitter positioning. The solution we present to the mesh generation problem for mobile network dimensioning is based on the use of an evolutionary algorithm. This algorithm, called hybrid island evolutionary strategy (HIES), performs distributed computation. It allows the user to tackle problem instances with large traffic density map requiring several hundreds of cells. HIES combines local search fast computation on individuals, incorporated into a global island-like strategy. Experiments are done on one real case representing the mobile traffic load of the second French city of Lyon and on several other traffic maps from urban fictive data sets.
Keywords :
cellular radio; evolutionary computation; mesh generation; telecommunication traffic; automatic mesh generation; cellular network; distributed computation; evolutionary algorithm; hybrid island evolutionary strategy; mobile network dimensioning; traffic density map; Base stations; Cities and towns; Costs; Frequency; Land mobile radio cellular systems; Mesh generation; Shape; Telecommunication traffic; Traffic control; Transmitters;
fLanguage :
English
Journal_Title :
Evolutionary Computation, IEEE Transactions on
Publisher :
ieee
ISSN :
1089-778X
Type :
jour
DOI :
10.1109/TEVC.2004.837923
Filename :
1395848
Link To Document :
بازگشت