• DocumentCode
    1241402
  • Title

    Sorting Genomes by Reciprocal Translocations, Insertions, and Deletions

  • Author

    Qi, Xingqin ; Li, Guojun ; Li, Shuguang ; Xu, Ying

  • Author_Institution
    Sch. of Appl. Math. & Stat., Shandong Univ. at Weihai, Weihai, China
  • Volume
    7
  • Issue
    2
  • fYear
    2010
  • Firstpage
    365
  • Lastpage
    374
  • Abstract
    The problem of sorting by reciprocal translocations (abbreviated as SBT) arises from the field of comparative genomics, which is to find a shortest sequence of reciprocal translocations that transforms one genome ?? into another genome ??, with the restriction that ?? and ?? contain the same genes. SBT has been proved to be polynomial-time solvable, and several polynomial algorithms have been developed. In this paper, we show how to extend Bergeron´s SBT algorithm to include insertions and deletions, allowing to compare genomes containing different genes. In particular, if the gene set of ?? is a subset (or superset, respectively) of the gene set of ??, we present an approximation algorithm for transforming ?? into ?? by reciprocal translocations and deletions (insertions, respectively), providing a sorting sequence with length at most OPT + 2, where OPT is the minimum number of translocations and deletions (insertions, respectively) needed to transform ?? into ??; if ?? and ?? have different genes but not containing each other, we give a heuristic to transform ?? into ?? by a shortest sequence of reciprocal translocations, insertions, and deletions, with bounds for the length of the sorting sequence it outputs. At a conceptual level, there is some similarity between our algorithm and the algorithm developed by El Mabrouk which is used to sort two chromosomes with different gene contents by reversals, insertions, and deletions.
  • Keywords
    bioinformatics; computational complexity; genetics; molecular biophysics; sorting; Bergeron´s SBT algorithm extension; approximation algorithm; comparative genomics; deletions; genome sorting; genome transformation; insertions; polynomial algorithms; polynomial time solvable problem; reciprocal translocations; Analysis of Algorithms and Problem Complexity; Sorting and searching; Translocation; algorithm.; deletion; insertion; Algorithms; Gene Deletion; Genomics; Models, Genetic; Mutagenesis, Insertional; Translocation, Genetic;
  • fLanguage
    English
  • Journal_Title
    Computational Biology and Bioinformatics, IEEE/ACM Transactions on
  • Publisher
    ieee
  • ISSN
    1545-5963
  • Type

    jour

  • DOI
    10.1109/TCBB.2008.53
  • Filename
    4538210