• DocumentCode
    1241464
  • Title

    Detecting Word Substitutions in Text

  • Author

    Fong, SzeWang ; Roussinov, Dmitri ; Skillicorn, David B.

  • Author_Institution
    Sch. of Comput., Queen´´s Univ., Kingston, ON
  • Volume
    20
  • Issue
    8
  • fYear
    2008
  • Firstpage
    1067
  • Lastpage
    1076
  • Abstract
    Searching for words on a watchlist is one way in which large-scale surveillance of communication can be done, for example in intelligence and counterterrorism settings. One obvious defense is to replace words that might attract attention to a message with other, more innocuous, words. For example, the sentence the attack will be tomorrow" might be altered to the complex will be tomorrow", since \´complex\´ is a word whose frequency is close to that of \´attack\´. Such substitutions are readily detectable by humans since they do not make sense. We address the problem of detecting such substitutions automatically, by looking for discrepancies between words and their contexts, and using only syntactic information. We define a set of measures, each of which is quite weak, but which together produce per-sentence detection rates around 90% with false positive rates around 10%. Rules for combining persentence detection into per-message detection can reduce the false positive and false negative rates for messages to practical levels. We test the approach using sentences from the Enron email and Brown corpora, representing informal and formal text respectively.
  • Keywords
    text analysis; large-scale surveillance; permessage detection; persentence detection; text analysis; word substitution detection; co-occurrence; counterterrorism; data mining; pointwise mutual information; textual analysis; word frequencies;
  • fLanguage
    English
  • Journal_Title
    Knowledge and Data Engineering, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1041-4347
  • Type

    jour

  • DOI
    10.1109/TKDE.2008.94
  • Filename
    4538219