DocumentCode :
1241707
Title :
Learning Context-Sensitive Shape Similarity by Graph Transduction
Author :
Bai, Xiang ; Yang, Xingwei ; Latecki, Longin Jan ; Liu, Wenyu ; Tu, Zhuowen
Author_Institution :
Dept. of Electron. & Inf. Eng., Huazhong Univ. of Sci. & Technol., Wuhan, China
Volume :
32
Issue :
5
fYear :
2010
fDate :
5/1/2010 12:00:00 AM
Firstpage :
861
Lastpage :
874
Abstract :
Shape similarity and shape retrieval are very important topics in computer vision. The recent progress in this domain has been mostly driven by designing smart shape descriptors for providing better similarity measure between pairs of shapes. In this paper, we provide a new perspective to this problem by considering the existing shapes as a group, and study their similarity measures to the query shape in a graph structure. Our method is general and can be built on top of any existing shape similarity measure. For a given similarity measure, a new similarity is learned through graph transduction. The new similarity is learned iteratively so that the neighbors of a given shape influence its final similarity to the query. The basic idea here is related to PageRank ranking, which forms a foundation of Google Web search. The presented experimental results demonstrate that the proposed approach yields significant improvements over the state-of-art shape matching algorithms. We obtained a retrieval rate of 91.61 percent on the MPEG-7 data set, which is the highest ever reported in the literature. Moreover, the learned similarity by the proposed method also achieves promising improvements on both shape classification and shape clustering.
Keywords :
computer vision; graph theory; image classification; image matching; learning (artificial intelligence); pattern clustering; query processing; Google Web search; MPEG-7 data set retrieval; PageRank ranking; computer vision; context-sensitive shape similarity learning; graph structure; graph transduction; query shape; shape classification; shape clustering; shape matching algorithms; shape retrieval; smart shape descriptor design; Shape similarity; graph transduction.; shape classification; shape clustering; shape retrieval; Algorithms; Artificial Intelligence; Form Perception; Image Interpretation, Computer-Assisted; Pattern Recognition, Automated; Subtraction Technique;
fLanguage :
English
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
Publisher :
ieee
ISSN :
0162-8828
Type :
jour
DOI :
10.1109/TPAMI.2009.85
Filename :
4815272
Link To Document :
بازگشت